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LE'ITER TO THE EDITOR 

Pre- and post-gel size distributions in (ir)reversible 
polymerisation 

P van Dongen and M H Ernst 
Institute for Theoretical Physics, Princetonplein 5 ,  PO Box 80.006, 3508 TA Utrecht, 
The Netherlands 

Received 29 March 1983 

Abstract. A class of irreversible coagulation processes can be modelled by Smoluchowski's 
coagulation equation with rate constants K,,  = A  + E ( i  + j )  + Cij (non-negative A, B and 
C). For C # 0 a gelation transition occurs. We obtain explicit solutions for the size 
distribution c k ( f )  with ck(0)  = 6 k  Next, we construct and solve the equations for reversible 
polymerisation by incorporating break-up processes in the kinetic equation with a 
unimolecular f agmentation rate F,, = AN,NfK,JN,+, .  The degeneracy factors Nk obey 
(k - 1)Nk = Z K, ,N,N,  with i t j  = k and N I  = 1, and the strength parameter A = 
exp(g/kBT), where the binding energy g + -CO for irreversible coagulation. Here explicit 
results are only given for Flory's polymerisation models RA, and ERA,-,. In the vicinity 
of the gel point we verify the scaling hypothesis and calculate critical exponents. 

Smoluchowski's equation for rapid coagulation models the time evolution of the 
size distribution c k  (t)  in coagulation processes, such as polymerisation, clustering of 
colloidal particles, aerosols, red blood cells etc (Drake 1972), in the following form: 

to be solved subject to the monodisperse initial condition C k ( O ) = & l .  The purpose 
of the present letter is first to determine the global solution of (1) for the general 
bilinear kernel K,, = A +B(i + j )  + Cij with A, B, C non-negative, and next, to extend 
these results by including break-up or fragmentation effects. 

The terms in the kinetic equation (1) represent the gain and loss of k-clusters. 
The rate at which i- and j-clusters combine is given by K,,c,c,. Several polymerisation 
models of Rory and Stockmayer correspond to special cases of the bilinear kernel: 
the RAf model (A-A honds. no cycles, monomers with f equireactive A- groups (f = 2, 
3,4 ,  . . .), and Kij = rIrJ with U k  = ( f -  2)k + 2) and the BgRA, model (A -B bonds, no 
cycles, monomers with f equireactive A-groups cf= 1, 2, .  . .) and g equireactive 
B-groups (g  = 1, 2 , .  . .), and K, =sl(A)s,(B)+s,(B)s,(A) with &(A) = cf- l ) k  + 1 and 
sk(B) = (g - l)k + 1). In these models the coagulation kernels are proportional to the 
number of possibilities to form an (i +&mer out of an i-mer and a j-mer. 

An important property of (1) is the conservation of total mass of sol particles 
(finite size clusters): M l ( t )  = 0. which applies as long as XI,, iK,,c,c, <CO. The instant 
t, (gel point), at which Zl., iKl,clc, diverges, marks the onset of gelation, characterised 
by Mt( t )  < 0. This property is interpreted as the formation of a superparticle (gel), 
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whose mass is comparable to that of the entire system. Such a gelation transition 
occurs at a finite time t ,  for coagulation kernels with C # 0, as we shall see below. 

For later use we introduce the nth moment of the size distribution M,,(t)= 
Z?=’=, k ” C k ( t ) ,  where MO and M1 denote respectively the total number and total mass 
of sol particles. 

Pre-gelationsolutions to(1)of thegeneralformck(t) =.r~(t)Nk([(t))~ withck(0) = 8kl 
are well known for the models RAf  and BRAfwl (Ziff and Stell 1980, Cohen and 
Benedek 1982). Drake (1972) was able to write down a formal series for the 
pre-gelationsolutionwitharbitraryA,B andC andwithck(0) =akl. Spouge (1983a, b) 
showed that the general bilinear kernel allows solutions of the above form, without 
giving the explicit time dependence of d(t)  and [ ( t ) .  Post-gelation solutions to (1) 
have only recently been found by Ziff (1980) and Ziff and Stell for the RAf model 
and by Leyvraz and Tschudi (1981) for the R A ,  model. In addition, Leyvraz and 
Tschudi were able to prove the existence of global solutions (valid for all t )  for general 
initial conditions. 

In order to determine pre-gelation solutions, we introduce 

P k ( f ) = x K k j C , ( t ) = C k  + B  + ( B k  +A)Mo( t )  
i 

and transform (1) into dak/d8 =i~i+i=kKijuiuj .  Its solution with a k ( O )  = 8 k l  reads 
ak(6)  =Nkek-l, where the coefficients Nk satisfy the recursion relation 

(k - 1)Nk =; 1 Kj,N& (NI = 1). 
i + j = k  

Hence the pre-gelation solution (t < t,) can be written as c k ( t )  =dNkck with 

e [B +AMo(t’)] dr’) = 

(3) 

(4) 

The so-called degeneracy factors Nk for the models RAf  and BRAf-l  have been 
recently reviewed by Cohen and Benedek, and new results for the model B,RAf have 
been found by Spouge (1983~). For our purpose only the large4 behaviour of Nk is 
of interest, which shall be determined below. 

To obtain explicit expressions for d and [ in (4) we derive the following moment 
equations from (1): 

kfo = - i (AMi  + 2BM&f1 + CM: ) (all t )  k f2=A+2BM2+CM: (t<t,) .  ( 5 )  

If C = 0, this equation shows that M2(f)  <CO and consequently X i , ,  iKiicici < 00 for all 
t < CO. Hence M l ( t )  = 1 for all finite t, and no gelation occurs. If C # 0, the solution 
M 2 ( f )  of ( 5 )  diverges at a finite time t ,  (gel point), and M l ( t )  = 1 only for t <t,. The 
value of the time I ,  (where M2(tc) =CO) has already been obtained by Drake, who 
suggested (apparently unaware of the phase transition at t = t,) that the kinetic equation 
(1) was physically meaningless for t > t,, and implied that the bilinear kernel with 
C # 0 is not a physically valid coagulation kernel. Similar conclusions are implied in 
other publications (e.g. McLeod 1964, Klett 1975). 
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In order to solve ( 5 )  we distinguish between three cases: B 2 > A C ,  B2 =AC and 
B2 < AC, and define 

~ O ( T )  = Mo(t) + B/A m2(7) = M2(r) + B/C & =B'/A'-c/A 
1 

T =?At. 

For B2 > AC and T < T ,  = iAt,,we find the pre-gelation solutions (Drake 1972) 

M O ( T )  = PO coth CLO(TO + 7 )  

T O  = ( Z / C L O )  tanh-'[AcLo/(B +A11 

m2(7) = (Apo/c) coth 2po(Tc-T) 
(6)  

T ,  = (1/2p0) tanh-'[Apo/(B +C)]. 

The case B 2 < A C  
i = 4-l), leading to 
po + 0 will yield the 

can be obtained by everywhere replacing po by ilpo( (where 
goniometric rather than hyperbolic functions. Taking the limit 
corresponding results for B 2  = AC. We shall restrict ourselves 

to B 2 > A C .  The result (6) is combined with (2) to yield 

[o'po(t') dt' = 2 log[(sinh p0(7 + ro))/(sinh P O T O ) ]  

0 0 )  = (2/~0A)(sinh poT)(sinh ko.rd/(sinh p0(7 + T O ) ) ,  
(7) 

from which the coefficients (4) in the pre-gelation solution can be deduced: 

d(t) = & A ( s i n h  ,uoTO)/[(sinh kor)(sinh p o ( ~  + T ~ ) ) ]  

(8) 
exp(2p h). l+ZB/A 50) = (2 /c~A)(s inh  cLoT)[(sinh ccm)/(sinh PO(T +TO))] 

This result constitutes the solution c k ( t )  =dNktk of (1) for t < t c  with monodisperse 
initial conditions and arbitrary A,  B and C. According to Spouge (1983a) such 
solutions are only possible when the kernel is bilinear. In the special case C = 0 the 
solution ck ( t )  = dNktk is valid for all t. 

Next, we consider post-gelation solutions. Smoluchowski's equation also allows a 
solution of the form 

19) Ck ( t )  = Ck (&)/[I + b ( t  - t c ) ]  

provided ck ( t , )  satisfies the relation 

1 
Z 1 K i j c i ( t c ) c j ( t c ) =  (@k(tc)-b)Ck(tc)= (C+BMO(tc))(k - 1)Ck(lc)* (10) 

i + j = k  

The second equality follows from the solubility requirement b = Pl(tc). The solution 
reads C k ( t c )  = (C +BMo(t,))NkRk on account of (31, where R is some (as yet) undeter- 
mined constant. The solutions (9) are post-gelation solutions, since the sol mass 
Ml(t) = [l +b(t  -f,)]-' is no longer constant. The following argument shows that the 
pre- and post-gelation solutions can be matched, i.e. c k ( f l )  = c t ( t i ) ,  such that C k ( t )  is 
continuously differentiable at t = fc.  The C k ( t )  are continuous (and as solutions to (1) 
continuously differentiable at tc),  provided we choose R = tC E [ ( t c )  (a subscript 'c' will 
denote values at t = t ,) and provided the following relation is valid: 

. d c = $ l p o  C O t h p g ~ c - ~ A ~ o C O t h p O ( T c + ~ O )  P c +BMo(t,) 

= - A p  + Bpo COthpo(T, + T O ) .  (1 1) 
On the first line the relation dPp, = ec/gc has been used in combination with (7); on the 
second line the expression for m o ( ~ , )  has been inserted. With the help of (6) we find 
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after a straightforward but lengthy calculation 

R H S ( I I )  = L H S ( ~ ~ ) = C + B / ( ~ + ( K ~ ~ / C ) ~ ’ ~ ) ,  

proving the matching condition ( 1  1). This calculation also yields 

Mo(tc) = r 1 + (Kl 1 / C )  1 / 2  1 - 1  b = P i ( t c )  = ( K I ~ C ) ’ / ~ +  B/[1 + ( C / K I ~ ) ” ~ ] .  ( 1 2 )  

In summary: for arbitrary non-negative A, B and C (with C # 0) the post-gel solution 
(9)  will be reached for monodisperse initial conditions. 

In the following part we show that C k ( t c )  =qok-‘ ( k  + C O )  and discuss the properties 
of C k ( t )  near the gel point. The large-k behaviour of Ck(tc)~[[C+BMo(tc)]nk can be 
determined from the small-x behaviour of the generating functions; for x t 0 we have 

W W 

G ( x ) =  nkekx - P o + P l x  +.  . . F ( x )  = knkekx = P, + * * . 
k = l  k = l  

where the quantities 
W 

Po= f nk =Mo(rc)[C+BMo(t,)]-’ knk = [c +BMo(t,)]-’ 
k = l  k = l  

are given through ( 1 2 ) .  We first observe that the n k  satisfy the recursion relations ( 3 )  
on account of (lo), implying 

F=C-1{l-BG-[(1-BG)2-ACGZ-2CG]’~2}. 

The dominant small-x singularity in F ( x )  is a branch point, since the argument of the 
square root on the RHS of this equation vanishes for the given value of G(0)=Po,  
and we find 

F(x)/P1= 1 - [ - 2 b x / c ] 1 / 2  (x t 0). 

The above branch point singularity implies, according to Hendriks et a1 (1983), an 
algebraic tail in C k ( t c )  of the form c k ( t c )  = ( b / 2 . n ~ ) ’ / ~ k - ’ / ~  ( k  +CO). The criticalproper- 
ties of C k ( t )  can be obtained most easily by considering C k ( t ) / C k ( t c )  -- Q k ( t  t t , )  in ( 2 )  
and expanding log Q in powers of ( f  - t c ) ,  where 

log Q = log - - [C +BMo(t‘)]dt’ - tC6 ( t  - tC)’ ( I  t t c ) .  ( 1 3 )  (3 s: 
The coefficient of ( t - t , )  in ( 1 3 )  vanishes on account of the matching condition ( l l ) ,  
and the coefficient of ( t  - tJZ has been simplified by using the relation n;ro(tc) = 
-bMo(t,). The resulting scaling form for the size distribution in the scaling limit f i,, 
k + CO with k ( t ,  - t ) l / o  fixed, becomes 

C k ( t )  = ( 6 / 2 d ) 1 / 2 k - ’  exp[ - k b k ( t ,  - f ) l / l r ]  

where the critical exponents 7 = $ and = f are universal within the class of models 
with Kii = Cij +B(i  + j )  + A  and arbitrary non-negative A,  B and C with C # 0. The 
method of Ernst et a1 (1982) can be applied to calculate the remaining critical exponents 
and critical amplitudes, and one finds that the model with a general bilinear kernel 
belongs to the same universality class as the simple R A ,  model with Kij = ij. Inclusion 
of fragmentation effects, to be discussed below, will introduce a fourth model parameter 
A (measuring the fragmentation strength), but does not change the universality class. 
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The previous kinetic theories of coagulation (including the polymerisation models 
&RAf ,  and RA,) describe irreversible polymerisation and only allow for trivial 
stationary solutions c k ( a )  = 0. The most probable solutions in the Flory-Stockmayer 
(FS) theory of polymerisation, with an arbitrarily prescribed value of the extent of 
reaction a, can only appear as stationary solutions in models for reversible polymerisa- 
tion. In the remaining part of this letter we include fragmentation in such a way that 
the FS solutions appear as the stationary solutions of (14). Let Fii be the rate coefficient 
for the unimolecular fragmentation process of a k-mer into an i-mer and a j-mer; 
then we have the kinetic equation for reversible polymerisation in the form 

m 

to be solved subject to the initial condition Ck(0) = & I .  Since all bonds within a k-mer 
are equivalent, we impose that the total fragmentation rate of a k-mer is proportional 
to the number of bonds, i.e. 4 x . i + j = k  Fij = A  (k - 1). By Arrhenius’s law, A is proportional 
to the Boltzmann factor exp(g/kBT), where g is the free energy of a single bond, k B  

is Boltzmann’s constant and T the temperature. 
Furthermore the existence of stationary solutions c k  (as) imposes the following 

detailed balance condition on the fragmentation coefficient: F i j c i + i ( ~ )  = Kiic i (a)c j (W) .  
Combining both conditions yields a recursion relation for ck (a), related to (3), whose 
solution is c k ( a )  = A ( C ~ ( ~ ) / A ) ~ N , ,  where Nk is defined in (3). Hence, detailed balance 
has enabled us to construct for a given coagulation kernel Kij  the fragmentation kernel 
in the form 

F,j = AKijNiNj/N,+j. (15)  
The solution (pre-gel solution) of the kinetic equation (14)  for reversible polymerisa- 
tion (A # O )  in the absence (presence) of gelation is given by the solution C k ( t )  to (1 )  
for irreversible polymerisation (A = O), provided t is replaced by the solution t*(t)  of 
the equation dr*/dt= l - A / d ( t * )  with t*(O)-0, where d(t) is given by (8). This 
equation can be solved explicitly for the general bilinear kernel and the result shows 
that for bilinear kernels with C # 0 the gelation transition is suppressed for A a Ao, 
where A O  is some critical fragmentation strength. The gel point t , (A) for A < A o  can 
be calculated from the equation t*(t,) = t r ,  where t,* is the gel point for irreversible 
coagulation, calculated in (6).  In the post-gel state ( t  > t,) the equation for t* ( t )  reads 
dt*/dt = l - A [ l + b ( t * - t ~ ) ] / d , ,  withinitial value t*(r,)=t,*. 

As a illustration of the results for reversible polymerisation we give the solutions 
for the polymerisation models RA, (pre-gelation) and BRAf-l .  The solution of (14)  
can be constructed along the same lines, as followed by Ziff. The first step is to find 
the most probable solutions for the RAf and BRAf- ,  models respectively (see Cohen 
and Benedek 1982) 

where the Nk are the solutions of (3) for the corresponding coagulation kernels Kii, 
and CK is the extent of reaction or fraction of reacted A-groups. The next step is to 
replace a in (16)  by the time dependent solution CK (t) of the macroscopic rate equations, 
which read for these models respectively 

d. =f( 1 -ACX d. = ( 1  - - ( ~ ) [ 1 -  (f- 1 ) a I - h ~ ~  (17)  
with initial condition a (0)  = 0. The solutions are standard. In the RA,  model gelation 
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occurs at a ,  = cf- l)-'. For sufficiently large values of A ,  a approaches a stationary 
value smaller than a,, so that the phase transition is suppressed. This happens for 
A >Ao=f(f-2)*/(f-  1). Post-gel solutions (existing for A < A o )  can be constructed 
from (9) in a similar way. A detailed discussion of the kinetic theory of reversible 
polymerisation will be published elsewhere. 
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