Pre- and post-gel size distributions in (ir)reversible polymerisation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L327
(http://iopscience.iop.org/0305-4470/16/10/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:14

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Pre- and post-gel size distributions in (ir)reversible polymerisation

P van Dongen and M H Ernst
Institute for Theoretical Physics, Princetonplein 5, PO Box 80.006, 3508 TA Utrecht, The Netherlands

Received 29 March 1983

Abstract

A class of irreversible coagulation processes can be modelled by Smoluchowski's coagulation equation with rate constants $K_{i j}=A+B(i+j)+C i j$ (non-negative A, B and C). For $C \neq 0$ a gelation transition occurs. We obtain explicit solutions for the size distribution $c_{k}(t)$ with $c_{k}(0)=\delta_{k 1}$. Next, we construct and solve the equations for reversible polymerisation by incorporating break-up processes in the kinetic equation with a unimolecular f'agmentation rate $F_{i j}=\lambda N_{i} N_{i} K_{i j} / N_{i+j}$. The degeneracy factors N_{k} obey $(k-1) N_{k}=\frac{1}{2} \sum K_{i j} N_{i} N_{j}$ with $i+j=k$ and $N_{1}=1$, and the strength parameter $\lambda=$ $\exp \left(g / k_{\mathrm{B}} T\right)$, where the binding energy $g \rightarrow-\infty$ for irreversible coagulation. Here explicit results are only given for Flory's polymerisation models $R A_{f}$ and $B R A_{f-1}$. In the vicinity of the gel point we verify the scaling hypothesis and calculate critical exponents.

Smoluchowski's equation for rapid coagulation models the time evolution of the size distribution $c_{k}(t)$ in coagulation processes, such as polymerisation, clustering of colloidal particles, aerosols, red blood cells etc (Drake 1972), in the following form:

$$
\begin{equation*}
\dot{c}_{k}=\frac{1}{2} \sum_{i+j=k} K_{i j} c_{i} c_{j}-c_{k} \sum_{j=1}^{\infty} K_{k j} c_{j} \tag{1}
\end{equation*}
$$

to be solved subject to the monodisperse initial condition $c_{k}(0)=\boldsymbol{\delta}_{k 1}$. The purpose of the present letter is first to determine the global solution of (1) for the general bilinear kernel $K_{i j}=A+B(i+j)+C i j$ with A, B, C non-negative, and next, to extend these results by including break-up or fragmentation effects.

The terms in the kinetic equation (1) represent the gain and loss of k-clusters. The rate at which i - and j-clusters combine is given by $K_{i i} c_{i} c_{j}$. Several polymerisation models of Flory and Stockmayer correspond to special cases of the bilinear kernel: the $R A_{f}$ model ($A-A$ honds, no cycles, monomers with f equireactive A-groups $(f=2$, $3,4, \ldots)$, and $K_{i j}=\sigma_{i} \sigma_{i}$ with $\left.\sigma_{k}=(f-2) k+2\right)$ and the $B_{g} R A_{f}$ model $(A-B$ bonds, no cycles, monomers with f equireactive A-groups $(f=1,2, \ldots$) and g equireactive B-groups $(g=1,2, \ldots)$, and $K_{i j}=s_{i}(A) s_{j}(B)+s_{i}(B) s_{j}(A)$ with $s_{k}(A)=(f-1) k+1$ and $\left.s_{k}(B)=(g-1) k+1\right)$. In these models the coagulation kernels are proportional to the number of possibilities to form an $(i+j)$-mer out of an i-mer and a j-mer.

An important property of (1) is the conservation of total mass of sol particles (finite size clusters): $\boldsymbol{M}_{1}(t)=0$, which applies as long as $\Sigma_{i, j} i K_{i j} c_{i} c_{j}<\infty$. The instant t_{c} (gel point), at which $\Sigma_{i, j} i K_{i j} c_{i} c_{j}$ diverges, marks the onset of gelation, characterised by $M_{1}(t)<0$. This property is interpreted as the formation of a superparticle (gel),
whose mass is comparable to that of the entire system. Such a gelation transition occurs at a finite time t_{c} for coagulation kernels with $C \neq 0$, as we shall see below.

For later use we introduce the nth moment of the size distribution $M_{n}(t)=$ $\sum_{k=1}^{\infty} k^{n} c_{k}(t)$, where M_{0} and M_{1} denote respectively the total number and total mass of sol particles.

Pre-gelation solutions to (1) of the general form $c_{k}(t)=\mathscr{A}(t) N_{k}(\xi(t))^{k}$ with $c_{k}(0)=\delta_{k 1}$ are well known for the models $R A_{f}$ and $B R A_{f-1}$ (Ziff and Stell 1980, Cohen and Benedek 1982). Drake (1972) was able to write down a formal series for the pre-gelation solution with arbitrary A, B and C and with $c_{k}(0)=\delta_{k 1}$. Spouge (1983a, b) showed that the general bilinear kernel allows solutions of the above form, without giving the explicit time dependence of $\mathscr{A}(t)$ and $\xi(t)$. Post-gelation solutions to (1) have only recently been found by Ziff (1980) and Ziff and Stell for the $R A_{f}$ model and by Leyvraz and Tschudi (1981) for the $R A_{\infty}$ model. In addition, Leyvraz and Tschudi were able to prove the existence of global solutions (valid for all t) for general initial conditions.

In order to determine pre-gelation solutions, we introduce
$\beta_{k}(t)=\sum_{j} K_{k j} c_{j}(t)=C k+B+(B k+A) M_{0}(t)$
$c_{k}(t)=a_{k}(\theta) \exp \left(-\int_{0}^{t} \beta_{k}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right) \quad \theta(t)=\int_{0}^{t} \mathrm{~d} t^{\prime} \exp \left(-\int_{0}^{t^{\prime}} \beta_{0}\left(t^{\prime \prime}\right) \mathrm{d} t^{\prime \prime}\right)$
and transform (1) into $\mathrm{d} a_{k} / \mathrm{d} \theta=\frac{1}{2} \Sigma_{i+j=k} K_{i j} a_{i} a_{j}$. Its solution with $a_{k}(0)=\delta_{k 1}$ reads $a_{k}(\theta)=N_{k} \theta^{k-1}$, where the coefficients N_{k} satisfy the recursion relation

$$
\begin{equation*}
(k-1) N_{k}=\frac{1}{2} \sum_{i+j=k} K_{i j} N_{i} N_{j} \quad\left(N_{1}=1\right) \tag{3}
\end{equation*}
$$

Hence the pre-gelation solution $\left(t<t_{\mathrm{c}}\right)$ can be written as $c_{k}(t)=\mathscr{A} N_{k} \xi^{k}$ with

$$
\begin{align*}
& \mathscr{A}(t)=\theta^{-1} \exp \left(-\int_{0}^{t}\left[B+A M_{0}\left(t^{\prime}\right)\right] \mathrm{d} t^{\prime}\right)=\frac{\dot{\theta}}{\theta} \\
& \xi(t)=\theta \exp \left(-\int_{0}^{t}\left[C+B M_{0}\left(t^{\prime}\right)\right] \mathrm{d} t^{\prime}\right) \tag{4}
\end{align*}
$$

The so-called degeneracy factors N_{k} for the models $R A_{f}$ and $B R A_{f-1}$ have been recently reviewed by Cohen and Benedek, and new results for the model $B_{8} R A_{f}$ have been found by Spouge (1983c). For our purpose only the large- k behaviour of N_{k} is of interest, which shall be determined below.

To obtain explicit expressions for \mathscr{A} and ξ in (4) we derive the following moment equations from (1):
$\dot{M}_{0}=-\frac{1}{2}\left(A M_{0}^{2}+2 B M_{0} M_{1}+C M_{1}^{2}\right)($ all $t) \quad \dot{M}_{2}=A+2 B M_{2}+C M_{2}^{2}\left(t<t_{\mathrm{c}}\right)$.
If $C=0$, this equation shows that $M_{2}(t)<\infty$ and consequently $\Sigma_{i, j} i K_{i j} c_{i} c_{j}<\infty$ for all $t<\infty$. Hence $M_{1}(t)=1$ for all finite t, and no gelation occurs. If $C \neq 0$, the solution $M_{2}(t)$ of (5) diverges at a finite time t_{c} (gel point), and $M_{1}(t)=1$ only for $t<t_{\mathrm{c}}$. The value of the time t_{c} (where $M_{2}\left(t_{\mathrm{c}}\right)=\infty$) has already been obtained by Drake, who suggested (apparently unaware of the phase transition at $t=t_{c}$) that the kinetic equation (1) was physically meaningless for $t>t_{c}$, and implied that the bilinear kernel with $C \neq 0$ is not a physically valid coagulation kernel. Similar conclusions are implied in other publications (e.g. McLeod 1964, Klett 1975).

In order to solve (5) we distinguish between three cases: $B^{2}>A C, B^{2}=A C$ and $B^{2}<A C$, and define

$$
\begin{aligned}
m_{0}(\tau)=M_{0}(t) & +B / A \quad m_{2}(\tau)=M_{2}(t)+B / C \quad \mu_{0}^{2}=B^{2} / A^{2}-C / A \\
\tau & =\frac{1}{2} A t .
\end{aligned}
$$

For $B^{2}>A C$ and $\tau<\tau_{\mathrm{c}}=\frac{1}{2} A t_{\mathrm{c}}$-we find the pre-gelation solutions (Drake 1972)
$m_{0}(\tau)=\mu_{0} \operatorname{coth} \mu_{0}\left(\tau_{0}+\tau\right) \quad m_{2}(\tau)=\left(A \mu_{0} / C\right) \operatorname{coth} 2 \mu_{0}\left(\tau_{c}-\tau\right)$
$\tau_{0}=\left(1 / \mu_{0}\right) \tanh ^{-1}\left[A \mu_{0} /(B+A)\right] \quad \tau_{\mathrm{c}}=\left(1 / 2 \mu_{0}\right) \tanh ^{-1}\left[A \mu_{0} /(B+C)\right]$.
The case $B^{2}<A C$ can be obtained by everywhere replacing μ_{0} by $\mathrm{i}\left|\mu_{0}\right|$ (where $\mathrm{i}=\sqrt{-1}$), leading to goniometric rather than hyperbolic functions. Taking the limit $\mu_{0} \rightarrow 0$ will yield the corresponding results for $B^{2}=A C$. We shall restrict ourselves to $B^{2}>A C$. The result (6) is combined with (2) to yield

$$
\begin{align*}
& \int_{0}^{t} \beta_{0}\left(t^{\prime}\right) \mathrm{d} t^{\prime}=2 \log \left[\left(\sinh \mu_{0}\left(\tau+\tau_{0}\right)\right) /\left(\sinh \mu_{0} \tau_{0}\right)\right] \tag{7}\\
& \theta(t)=\left(2 / \mu_{0} A\right)\left(\sinh \mu_{0} \tau\right)\left(\sinh \mu_{0} \tau_{0}\right) /\left(\sinh \mu_{0}\left(\tau+\tau_{0}\right)\right)
\end{align*}
$$

from which the coefficients (4) in the pre-gelation solution can be deduced:

$$
\begin{gather*}
\mathscr{A}(t)=\frac{1}{2} \mu_{0} A\left(\sinh \mu_{0} \tau_{0}\right) /\left[\left(\sinh \mu_{0} \tau\right)\left(\sinh \mu_{0}\left(\tau+\tau_{0}\right)\right)\right] \\
\xi(t)=\left(2 / \mu_{0} A\right)\left(\sinh \mu_{0} \tau\right)\left[\left(\sinh \mu_{0} \tau_{0}\right) /\left(\sinh \mu_{0}\left(\tau+\tau_{0}\right)\right)\right]^{1+2 B / A} \exp \left(2 \mu_{0}^{2} \tau\right) \tag{8}
\end{gather*}
$$

This result constitutes the solution $c_{k}(t)=\mathscr{A} N_{k} \xi^{k}$ of (1) for $t<t_{\mathrm{c}}$ with monodisperse initial conditions and arbitrary A, B and C. According to Spouge (1983a) such solutions are only possible when the kernel is bilinear. In the special case $C=0$ the solution $c_{k}(t)=\mathscr{A} N_{k} \xi^{k}$ is valid for all t.

Next, we consider post-gelation solutions. Smoluchowski's equation also allows a solution of the form

$$
\begin{equation*}
c_{k}(t)=c_{k}\left(t_{c}\right) /\left[1+b\left(t-t_{c}\right)\right] \tag{9}
\end{equation*}
$$

provided $c_{k}\left(t_{c}\right)$ satisfies the relation

$$
\begin{equation*}
\frac{1}{2} \sum_{i+i=k} K_{i i} c_{i}\left(t_{\mathrm{c}}\right) c_{i}\left(t_{\mathrm{c}}\right)=\left(\beta_{k}\left(t_{\mathrm{c}}\right)-b\right) c_{k}\left(t_{\mathrm{c}}\right)=\left(C+B M_{0}\left(t_{\mathrm{c}}\right)\right)(k-1) c_{k}\left(t_{\mathrm{c}}\right) \tag{10}
\end{equation*}
$$

The second equality follows from the solubility requirement $b=\beta_{1}\left(t_{c}\right)$. The solution reads $c_{k}\left(t_{c}\right)=\left(C+B M_{0}\left(t_{c}\right)\right) N_{k} R^{k}$ on account of (3), where R is some (as yet) undetermined constant. The solutions (9) are post-gelation solutions, since the sol mass $M_{1}(t)=\left[1+b\left(t-t_{c}\right)\right]^{-1}$ is no longer constant. The following argument shows that the pre- and post-gelation solutions can be matched, i.e. $c_{k}\left(t_{\mathrm{c}}^{+}\right)=c_{k}\left(t_{\mathrm{c}}^{-}\right)$, such that $c_{k}(t)$ is continuously differentiable at $t=t_{\mathrm{c}}$. The $c_{k}(t)$ are continuous (and as solutions to (1) continuously differentiable at t_{c}), provided we choose $R=\xi_{\mathrm{c}} \equiv \xi\left(t_{\mathrm{c}}\right)$ (a subscript ' c ' will denote values at $t=t_{\mathrm{c}}$) and provided the following relation is valid:

$$
\begin{gather*}
\mathscr{A}_{\mathrm{c}}=\frac{1}{2} A \mu_{0} \operatorname{coth} \mu_{0} \tau_{\mathrm{c}}-\frac{1}{2} A \mu_{0} \operatorname{coth} \mu_{0}\left(\tau_{\mathrm{c}}+\tau_{0}\right) \stackrel{?}{=} C+B M_{0}\left(t_{\mathrm{c}}\right) \\
 \tag{11}\\
=-A \mu_{0}^{2}+B \mu_{0} \operatorname{coth} \mu_{0}\left(\tau_{\mathrm{c}}+\tau_{0}\right) .
\end{gather*}
$$

On the first line the relation $\mathscr{A}_{\mathrm{c}}=\dot{\theta}_{\mathrm{c}} / \theta_{\mathrm{c}}$ has been used in combination with (7); on the second line the expression for $m_{0}\left(\tau_{c}\right)$ has been inserted. With the help of (6) we find
after a straightforward but lengthy calculation

$$
\operatorname{RHS}(11)=\operatorname{LHS}(11)=C+B /\left(1+\left(K_{11} / C\right)^{1 / 2}\right),
$$

proving the matching condition (11). This calculation also yields
$M_{0}\left(t_{\mathrm{c}}\right)=\left[1+\left(K_{11} / C\right)^{1 / 2}\right]^{-1} \quad b=\beta_{1}\left(t_{\mathrm{c}}\right)=\left(K_{11} C\right)^{1 / 2}+B /\left[1+\left(C / K_{11}\right)^{1 / 2}\right]$.
In summary: for arbitrary non-negative A, B and C (with $C \neq 0$) the post-gel solution (9) will be reached for monodisperse initial conditions.

In the following part we show that $c_{k}\left(t_{c}\right)=q_{0} k^{-\tau}(k \rightarrow \infty)$ and discuss the properties of $c_{k}(t)$ near the gel point. The large- k behaviour of $c_{k}\left(t_{c}\right) \equiv\left[C+B M_{0}\left(t_{c}\right)\right] n_{k}$ can be determined from the small- x behaviour of the generating functions; for $x \uparrow 0$ we have

$$
G(x) \equiv \sum_{k=1}^{\infty} n_{k} \mathrm{e}^{k x} \simeq P_{0}+P_{1} x+\ldots \quad F(x) \equiv \sum_{k=1}^{\infty} k n_{k} \mathrm{e}^{k x} \simeq P_{1}+\ldots
$$

where the quantities
$P_{0} \equiv \sum_{k=1}^{\infty} n_{k}=M_{0}\left(t_{\mathrm{c}}\right)\left[C+B M_{0}\left(t_{\mathrm{c}}\right)\right]^{-1} \quad P_{1} \equiv \sum_{k=1}^{\infty} k n_{k}=\left[C+B M_{0}\left(t_{\mathrm{c}}\right)\right]^{-1}$
are given through (12). We first observe that the n_{k} satisfy the recursion relations (3) on account of (10), implying

$$
F=C^{-1}\left\{1-B G-\left[(1-B G)^{2}-A C G^{2}-2 C G\right]^{1 / 2}\right\}
$$

The dominant small-x singularity in $F(x)$ is a branch point, since the argument of the square root on the RHS of this equation vanishes for the given value of $G(0)=P_{0}$, and we find

$$
F(x) / P_{1}=1-[-2 b x / C]^{1 / 2} \quad(x \uparrow 0)
$$

The above branch point singularity implies, according to Hendriks et al (1983), an algebraic tail in $c_{k}\left(t_{c}\right)$ of the form $c_{k}\left(t_{c}\right) \simeq(b / 2 \pi C)^{1 / 2} k^{-5 / 2}(k \rightarrow \infty)$. The critical properties of $c_{k}(t)$ can be obtained most easily by considering $c_{k}(t) / c_{k}\left(t_{c}\right)=Q^{k}\left(t \uparrow t_{c}\right)$ in (2) and expanding $\log Q$ in powers of $\left(t-t_{c}\right)$, where
$\log Q=\log \left(\frac{\theta}{\theta_{\mathrm{c}}}\right)-\int_{\mathrm{t}_{\mathrm{c}}}^{t}\left[C+B M_{0}\left(t^{\prime}\right)\right] \mathrm{d} t^{\prime} \simeq-\frac{1}{2} C b\left(t-t_{\mathrm{c}}\right)^{2} \quad\left(t \uparrow t_{\mathrm{c}}\right)$.
The coefficient of $\left(t-t_{c}\right)$ in (13) vanishes on account of the matching condition (11), and the coefficient of $\left(t-t_{\mathrm{c}}\right)^{2}$ has been simplified by using the relation $\dot{M}_{0}\left(t_{\mathrm{c}}\right)=$ $-b M_{0}\left(t_{\mathrm{c}}\right)$. The resulting scaling form for the size distribution in the scaling limit $t \uparrow t_{\mathrm{c}}$, $k \rightarrow \infty$ with $k\left(t_{\mathrm{c}}-t\right)^{1 / \sigma}$ fixed, becomes

$$
c_{k}(t)=(b / 2 \pi C)^{1 / 2} k^{-\tau} \exp \left[-\frac{1}{2} C b k\left(t_{\mathrm{c}}-t\right)^{1 / \sigma}\right]
$$

where the critical exponents $\tau=\frac{5}{2}$ and $\sigma=\frac{1}{2}$ are universal within the class of models with $K_{i j}=C i j+B(i+j)+A$ and arbitrary non-negative A, B and C with $C \neq 0$. The method of Ernst et al (1982) can be applied to calculate the remaining critical exponents and critical amplitudes, and one finds that the model with a general bilinear kernel belongs to the same universality class as the simple $R A_{\infty}$ model with $K_{i j}=i j$. Inclusion of fragmentation effects, to be discussed below, will introduce a fourth model parameter λ (measuring the fragmentation strength), but does not change the universality class.

The previous kinetic theories of coagulation (including the polymerisation models $B_{g} R A_{f}$, and $R A_{f}$) describe irreversible polymerisation and only allow for trivial stationary solutions $c_{k}(\infty)=0$. The most probable solutions in the Flory-Stockmayer (FS) theory of polymerisation, with an arbitrarily prescribed value of the extent of reaction α, can only appear as stationary solutions in models for reversible polymerisation. In the remaining part of this letter we include fragmentation in such a way that the fs solutions appear as the stationary solutions of (14). Let $F_{i j}$ be the rate coefficient for the unimolecular fragmentation process of a k-mer into an i-mer and a j-mer; then we have the kinetic equation for reversible polymerisation in the form

$$
\begin{equation*}
\dot{c}_{k}=\frac{1}{2} \sum_{i+j=k}\left(K_{i j} c_{i} c_{j}-F_{i j} c_{k}\right)-\sum_{j=1}^{\infty}\left(K_{k j} c_{k} c_{j}-F_{k j} c_{k+i}\right) \tag{14}
\end{equation*}
$$

to be solved subject to the initial condition $c_{k}(0)=\delta_{k 1}$. Since all bonds within a k-mer are equivalent, we impose that the total fragmentation rate of a k-mer is proportional to the number of bonds, i.e. $\frac{1}{2} \sum_{i+j=k} F_{i j}=\lambda(k-1)$. By Arrhenius's law, λ is proportional to the Boltzmann factor $\exp \left(\mathrm{g} / k_{\mathrm{B}} T\right)$, where g is the free energy of a single bond, k_{B} is Boltzmann's constant and T the temperature.

Furthermore the existence of stationary solutions $c_{k}(\infty)$ imposes the following detailed balance condition on the fragmentation coefficient: $F_{i j} c_{i+j}(\infty)=K_{i j} c_{i}(\infty) c_{j}(\infty)$. Combining both conditions yields a recursion relation for $c_{k}(\infty)$, related to (3), whose solution is $c_{k}(\infty)=\lambda\left(c_{1}(\infty) / \lambda\right)^{k} N_{k}$, where N_{k} is defined in (3). Hence, detailed balance has enabled us to construct for a given coagulation kernel $K_{i j}$ the fragmentation kernel in the form

$$
\begin{equation*}
F_{i j}=\lambda K_{i j} N_{i} N_{j} / N_{i+j} . \tag{15}
\end{equation*}
$$

The solution (pre-gel solution) of the kinetic equation (14) for reversible polymerisation ($\lambda \neq 0$) in the absence (presence) of gelation is given by the solution $c_{k}(t)$ to (1) for irreversible polymerisation ($\lambda=0$), provided t is replaced by the solution $t^{*}(t)$ of the equation $\mathrm{d} t^{*} / \mathrm{d} t=1-\lambda / \mathscr{A}\left(t^{*}\right)$ with $t^{*}(0)-0$, where $\mathscr{A}(t)$ is given by (8). This equation can be solved explicitly for the general bilinear kernel and the result shows that for bilinear kernels with $C \neq 0$ the gelation transition is suppressed for $\lambda \geqslant \lambda_{0}$, where λ_{0} is some critical fragmentation strength. The gel point $t_{c}(\lambda)$ for $\lambda<\lambda_{0}$ can be calculated from the equation $t^{*}\left(t_{c}\right)=t_{c}^{*}$, where t_{c}^{*} is the gel point for irreversible coagulation, calculated in (6). In the post-gel state $\left(t>t_{c}\right)$ the equation for $t^{*}(t)$ reads $\mathrm{d} t^{*} / \mathrm{d} t=1-\lambda\left[1+b\left(t^{*}-t_{\mathrm{c}}^{*}\right)\right] / \mathscr{A}_{\mathrm{c}}$, with initial value $t^{*}\left(t_{\mathrm{c}}\right)=t_{\mathrm{c}}^{*}$.

As a illustration of the results for reversible polymerisation we give the solutions for the polymerisation models $R A_{f}$ (pre-gelation) and $B R A_{f-1}$. The solution of (14) can be constructed along the same lines, as followed by Ziff. The first step is to find the most probable solutions for the $R A_{f}$ and $B R A_{f-1}$ models respectively (see Cohen and Benedek 1982)
$c_{k}=(\alpha / f)^{k-1}(1-\alpha)^{(f-2) k+2} N_{k} \quad c_{k}=\alpha^{k-1}(1-\alpha)^{(f-1) k+1}[1-(f-1) \alpha] N_{k}$
where the N_{k} are the solutions of (3) for the corresponding coagulation kernels $K_{i j}$, and α is the extent of reaction or fraction of reacted A-groups. The next step is to replace α in (16) by the time dependent solution $\alpha(t)$ of the macroscopic rate equations, which read for these models respectively

$$
\begin{equation*}
\dot{\alpha}=f(1-\alpha)^{2}-\lambda \alpha \quad \dot{\alpha}=(1-\alpha)[1-(f-1) \alpha]-\lambda \alpha \tag{17}
\end{equation*}
$$

with initial condition $\alpha(0)=0$. The solutions are standard. In the $R A_{f}$ model gelation
occurs at $\alpha_{c}=(f-1)^{-1}$. For sufficiently large values of λ, α approaches a stationary value smaller than α_{c}, so that the phase transition is suppressed. This happens for $\lambda>\lambda_{0}=f(f-2)^{2} /(f-1)$. Post-gel solutions (existing for $\lambda<\lambda_{0}$) can be constructed from (9) in a similar way. A detailed discussion of the kinetic theory of reversible polymerisation will be published elsewhere.

References

Cohen R J and Benedek G B 1982 J. Phys. Chem. 863696
Drake R L 1972 in Topics in Current Aerosol Research ed G M Hidy and J R Brock 3201
Ernst M H, Hendriks E M and Ziff R M 1982 J. Phys. A: Math. Gen. 15 L 743
Hendriks E M, Ernst M H and Ziff R M 1983 J. Stat. Phys. to appear
Klett J D 1975 J. Atmos. Sci. 32380
Leyvraz F and Tschudi H R 1981 J. Phys. A: Math. Gen. 143389
McLeod J B 1964 London Math. Soc. 14445
Spouge J L 1983a J. Phys. A: Math. Gen. 16767
—— 1983b Macromolecules 16121

- 1983c Macromolecules to appear

Ziff R M 1980 J. Stat. Phys. 23241
Ziff R M and Stell G 1980 J. Chem. Phys. 733492

